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ABSTRACT 
 
Up to date, the use of precision agriculture concepts on sugar cane is limited and 
one reason is due to difficulties in detecting the spatial yield variability and the 
effects of localized input applications. The main objective of this work was to 
explore the use of simple techniques to collect data in the field, during harvesting, 
to produce yield maps based on the harvesting systems used today, without 
interfering on it. The main hypothesis was that the weight load average on a small 
series of loads, represented by one truck or wagon is sufficiently representative 
for detecting yield variability based on the loads spacing in the row. Samples were 
taken in the fields from two loaders as treatments in 2002 and load coordinates 
from one field were collected in 2003 to calculate the area and yield of each load. 
Estimation of the total dispersion of load weights showed that it can be done by an 
interval of ± 2,5s from the weight average and treatments did not show the same 
trend on normality. Loaders averages differed, indicating that frequent 
calibrations would be necessary for using the average weight as an estimator of 
the load weights. It may be possible if using small population of loads. Data from 
2003 allowed the estimation of yield points that were interpolated resulting in a 
surface map of sugar cane yield showing the variability within the field.  
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INTRODUCTION 
 
With the advent of precision agriculture concepts, initially applied to grains, 

several solutions for yield mapping have been developed and tested. Commercial 
products have been available for grains since 1991 (BLACKMORE, 1994) and 



 

 

for cotton since 1997 (KHALILIAN et al., 1999). Works on other crops have been 
done, as coffee (SARTORI et al., 2002), peanuts (KVIEN, 1995), forage 
(AUERNHAMMER et al, 1995), hay (BASHFORD et al., 1995) and others. 
Initial attempts on generating sugar cane yield maps were conducted by Pierossi 
et al. (1997) using a instrumented truck for mechanically harvested chopped cane 
and Cox et al. (1998) with instrumentation on a harvester. BENJAMIN et al. 
(2001) designed and tested a sugar cane yield sensor based on a scale mounted on 
the floor of a sugar cane harvester elevator. Tests with different cane maturity, 
variety, flow rate and row lengths using a weigh wagon as comparison presented a 
prediction with slope of 0.9 and correlation of 0.966, Errors ranged from 0 to 33% 
and the average error of 118 tests was 11.05%. JHOTY et al. (2002) report an 
experiment of precision agriculture applied to sugar cane in Mauritius using a 
sugar cane yield monitoring system from Australia for generating yield maps. The 
sensor was based on a scale mounted on the floor of a sugar cane harvester 
elevator. Similarly, PAGNANO and MAGALHÃES (2001) presented a yield 
sensor using a weighing frame with transducers on the harvester elevator and 
reported average error of less than 3.2%, but very low individual row accuracy on 
field tests. Hernandez et al. (2003) presented a biomass flow sensor adapted to the 
harvester roller feeder using a displacement transmitter for measuring biomass 
input. Approaches of yield mapping on sugarcane using NDVI index from 
satellite images also have been proposed (Lamparelli et al., 2003).  

A yield monitor added to a sugar cane harvester will produce sugar cane 
yield maps, but in several countries the harvesting mechanization is far from 
being dominant. Brazil is the largest producer in the World, with about 5 million 
hectares of cane and about 80% of the area is manually cut for harvesting. The use 
of techniques and management enhancements provided by precision agriculture 
has been widely expected by the sugar cane industry represented by 
approximately 260 sugar mills and their suppliers. 

Sugar cane harvesting systems that depend on the use of manpower 
normally consist on burning the field prior to cutting to facilitate it. One cutter 
normally takes 5 rows and lay down the cane in one central row. A loader 
mounted on a tractor follows collecting and transferring it to a wagon or a truck 
(Figure 1). Initiatives have been tested on installing load sensors on the loader 
arm (Saraiva et al., 1999) but the speed as it happens does not allow for 
equalization of signal on the sensor, resulting in high uncertainty on the 
information.  

Up to date, the use of precision agriculture concepts on sugar cane is limited 
and one reason is due to the difficulty in detecting the spatial yield variability and 
the effects of localized input applications. The main objective of this work was to 
explore the use of simple techniques to collect data in the field, during harvesting, 
to produce yield maps based on the harvesting systems used today, without 
interfering on it. The main hypothesis was that the weight load average on a small 
series of loads, represented by one truck or wagon is sufficiently representative 
for detecting yield variability based on distance between loads in a row. 

 



 

 

 
 

Figure 1.  A representative condition of a sugar cane harvesting system based 
on hand cutting and mechanical loaders  

 
 

MATERIAL AND METHODS 
  
Initially field tests were conducted with the objective of collecting a series 

of data related to loads of representative loaders to analyze its weight 
characteristics and constancy. The field experiment was conducted during the 
2002 (October, 2002) harvesting season for collecting data related to the loads of 
two loaders and their operators (treatments A and B) in one farm operated by a 
sugar mill, in Catanduva, São Paulo State, Brazil (490.17’ W, 210.07’ S). The 
experimental area was cultivated with the variety RB85 5536 on its first cut at 
row spacing of 1.5m. The two loaders used on the test were both Motocana model 
Super 2000 with specified load capacity of 11770N, maximum elevation height of 
5.6m, with maximum grab opening of 1.6m and mounted on tractors MF 290 
FWD with engine power of 60.3kW. 

 For each loader a series of 75 loads were randomly selected and set aside. 
On a third loader, similar to the other two, a load cell was used after collecting 
each load and packing it with a special chain for measuring the load of each one. 
A load cell Kyowa, model LU-2TE with maximum capacity of 19620N was used, 
connected to a digital register Microp with resolution of 0.98N and powered by a 
12V battery. Initially the third loader took each load from the ground, the special 
chain was passed on it and it was laid down again for attaching the load cell 
between it and the loader grab for lifting it again and measuring its weight. 

 The data were analyzed using descriptive statistics and normality 
distribution by graphics and χ2 test at 95% probability. An analysis of variance 
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was applied for treatments A and B with F test and the average weight 
comparison was done using Tukey test, also at 95% probability. 

 A second phase of the work was conducted during the 2003 season (May 
2003), in the same mill but at a different field, with the same variety (RB85 5536) 
and loaders as before. Three loaders were involved in the test and for each loader 
navigation GPS receivers were used for manually collecting the position of each 
load in a entire field. The exact time for collecting position was when the loader 
arm started lifting, signalizing the end of a load. Sugar cane was transferred to the 
trucks or wagons that after loaded were weighed in a scale at the mill entrance. 

 After a preliminary data processing a spreadsheet was generated 
containing for each load, the truck or wagon identification, its weight, the load 
average and its location. After transforming the coordinates from geographical to 
UTM format the distances between each load location were calculated and with 
the width of 7.5m of each line of five rows, it resulted in the area represented by 
each load. The location of each load was adjusted to the center of its area. Field 
boundary was used for defining the beginning of each row and the coordinates 
were pushed back to the center of each rectangle. Yield was calculated based on 
the load weight average and the area representative of each load. The data 
spreadsheet was then transferred to a GIS for spatial analysis and processing, and 
a statistical analysis was also performed on the yield data for identifying 
discrepancies using the quartile criteria from Tukey (1977) and removing points 
considered as discrepant. 

 
RESULTS AND DISCUSSION 

 
Descriptive statistics of the weight loads from the two treatments is 

presented on Table 1. The extremes, average, standard deviation and coefficient of 
variation were higher for the treatment A, indicating a better uniformity of loads 
weight on treatment B. Also, related to the format of the distributions (Figure 2), 
both treatments presented negative skiuness and kurtosis, indicating concentration 
of specific values of load weights. The confidence interval for the average weight 
was ± 275 N for treatment A and ± 248 N for treatment B and the coefficient of 
variation was between 14.1 and 13.3%. 

The histograms of load weight distribution show for treatment A 
concentration of loads (28%) between 9000 e 9600 N, not shown on treatment B. 
In terms of dispersion around average, 66,7% (50 loads) on treatment A resulted 
in load weights between  ± 1,0 s, characterizing a normal distribution, and for 
treatment B, the interval of  ± 1,0s involved only 60,0% of the total sample of 
load weights. 

Table 2 presents the dispersion of average load weights for both treatments. 
At a confidence interval of ± 2,0s, 96% and 98% of the loads were involved, for 
treatment A and B, respectively. The total dispersion was includes in the interval 
of ± 2,5s. 

 
 
 
 
 



 

 

 
Table 1.  Descriptive statistics from data for the two treatments 

Statistics Treatment A Treatment B 
Average load weight (N) 8486 8075 
Standard error (N) 138 124 
Median (N) 8672 8198 
Mode (N) 9113 9506 
Average (N) 7769 7770 
Standard deviation (N) 1194 1076 
Variance (N2) 1.42.106 1.15.108 
Kurtosis -0.68 -0.63 
Skewness -0.08 -0.3 
Interval (N) 5375 4552 
Minimum (N) 5905 5494 
Maximum (N) 11281 10045 
Confidence interval* (N) 275 248 
Coefficient of variation 

(%) 14.07 13.33 
* Confidence interval for the average of 95,0%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Histograms of frequency distribution of load weights for treatment 
A (top) and treatment B (bottom) 
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Graphics on Figure 3 show the normal probability distribution for a 
qualitative evaluation of normality. For both treatments loads were distributed 
quite normally, with a high correlation coefficient of 0.98. Treatment B presented 
better indication of normal distribution. The χ2 test allows for a quantitative 
analysis of a normal distribution. The null hypothesis for the test was that load 
weights on both treatments were normally distributed. The critical value for χ2 
was 21,03. For treatment A χ2 was 35.70 and for treatment B it was 12.80, 
indicating that the load weight distribution for treatment B follows the normality 
and treatment A does not. 

Table 2.  Load weights average dispersion for the two treatments 
1 SD 2 SD 2.5 SD 

IL SL Loads IL SL Loads IL SL Loads Treatment 
(N) (N) (%) (N) (N) (%) (N) (N) (%) 

A 7291 9681 67 6098 10874 96 5501 11471 100 
B 6999 9151 60 5923 10227 98 5385 10765 100 
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Figure 3.  Normal probability distribution of load weights for treatment A 
(left) and treatment B (right) 

 

From the average weight comparison the two treatments were significantly 
different. It indicates that frequent calibrations would be necessary and an average 
may be representative only for a small population of loads, like one truck or 
wagon that takes approximately 15 to 20 loads each. 

An initial statistical analysis from data collected on the second part of the 
project corresponding to yield points calculated from distances and respective 
areas and truck or wagon weights distributed evenly for each load indicated that 
some of the collected points had to be considered as discrepant. From the criteria 
for removing discrepant data based on the quartiles, the lower limit was 27,3 
ton.ha-1 and the upper limit was 237,7 ton.ha-1. Figure 4 shows the distribution of 
points before and after the filtering process and Table 3 presents the statistics of 
the two populations, before and after the filtering. Figure 5 presents the maps of 
the field data with the location of each collected point indicating those considered 
discrepant, the map of yield points and an interpolated view of the yield 
distribution in the field using inverse distance as interpolator. 
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Figure 4.  Histograms of frequency distribution of raw yield data (a) and 
yield data after removing discrepant points (b) 

 

Table 3.  Descriptive statistics of the yield points before and after the filtering 

Value Parameter Raw data Filtered data 
Mean (ton.ha-1) 141.3 129.7 
Median (ton.ha-1) 127.7 124.9 
Minimum (ton.ha-1) 32.7 32.7 
Maximum (ton.ha-1) 664.0 237.7 
Lower quartile (ton.ha-1) 106.5 106.5 
Upper quartile (ton.ha-1) 159.4 159.4 
Variance 3.833.72 1.317.85 
Standard deviation 61.92 36.30 
Asymmetry 2.94 0.46 
Kurtosis 14.93 0.11 
Coefficient of variation (%) 43.82 29.04 
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Figure 5.  Map of yield points with discrepant data (a); yield points classified 
after removing the discrepant data (b); yield map after interpolation (c) 
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The discrepant data came only from points with high yields and probably 
related to distances shorter that what is possible between loads. One of the reasons 
for that may be related to the accuracy of the GPS receivers, not enough in this 
case. Loaders perform a straight operation with no reason for concentrating loads 
where there is no product. From Table 1 it is shown that the amount of product 
collected on each load can change in a range of about plus or minus 20 to 30% 
around the average load weight. It means that those points where not correctly 
collected, indicating some experimental error. 

The system here proposed and tested is limited on its accuracy especially 
related to the uncertainty of the load weight on each point. The only source of 
information related to yield variability is the distance between loads and it has to 
be correctly collected. An automated system installed on the loaders can provide it 
but it still has to deal with a sequence of movements that the arm of the loader 
will perform each time it is really loading. Sometimes the operator will use the 
arm to make adjustments to the truckload and it cannot be taken as a load. A 
system composed by positioning sensors along the arm was already built to 
guaranty the accuracy of the automated data collection using this concept 
associated with a customized data logger and GPS receiver.   

 
CONCLUSIONS 

 
Estimation of the total dispersion of load weights from the first part of the 

work showed that it can be done by an interval of ± 2,5 SD from the weight 
average and treatments did not show the same trend on normality. Treatments 
differed, indicating that frequent calibrations would be necessary for using the 
average weight as an estimator of the load weights. It may be possible if using 
small population of loads like a truck or wagon. 

The methodology showed to be effective in generating sugarcane yield 
maps, making it possible to visualize significant infield variability. It is espected 
that with an automatic data collection, directly in the loader, the procedure will 
improve and increase information quality. 
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