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ABSTRACT 
 
The objective of this study was to characterize the spatial variability of some soil fertility 
indicators to explain the variability of grain yield. The field is located at the ABC Foundation 
Research Center, in Parana State, Brazil. This region has very mild summer climate, ideal for no 
tillage. Under these conditions, soil fertility may be more limiting to grain yield than soil physical 
properties. Soil samples were collected at approximately 30 m square grid at 0-5, 0-10 and 0-20 
cm depth and the coordinates of each of the 225 points were recorded with DGPS. The choice of 
sampling depths was to verify if any single depth is enough to inform soil fertility status under 
no-till. The properties analyzed are pH, H+Al, CEC, and sum of bases (SB). H+Al are soil acidity 
factors very important in tropical soils.  Semivariograms showed a very strong trend indicating 
soil fertility gradient. The linear trend was removed to satisfy the intrinsic hypothesis. It was 
concluded that the soil fertility indicators have a very high variability, indicating that they may be 
responsible for the variability in grain yield. 
 
INTRODUCTION 
 
Grain production is becoming a very competitive agricultural activity because of the marketing 
pressures to produce at lower costs, and because of environmental requirements to produce 
without erosion and pollution. No tillage is being successfully used in order to avoid erosion in 
many parts of Brazil. In particular, in the Northeast part of the state of Paraná State, the mild 
climate favors this tillage system very well. The complex combination of higher imediate profit 
with less environmental damage has lead to a technology which is now called precision 
agriculture or site specific management (Schueller, 1992), through which the soil properties are 
managed according to their variability (Stafford, 1999). Depending on the scale that the field is 
sampled in relation to its size, spatial correlation may be shown as has been reported for many 
years (Burgess & Webster, 1980, McBratney & Webster, 1981, Vieira et al., 1983).  When spatial 
correlation exists, any statistical analysis that requires independence fails and geostatistics 
becomes the appropriate tool (Oliver, 1999). Soil nutrient variability mapping has been reported 
as an important component for establishing management zones (Castrignanò et al., 2000), 
although there are reports on recommendations affected by time of sampling (Hoskinson et al., 
1999) and by variability in laboratory results (Brenk, et al. 1999). The knowledge of the spatial 
variability using the appropriate statistical tools is, therefore, essential for mapping and 
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delineating management zones and, consequently, for the application of precision agriculture 
techniques. 
The objectives of the present study were to characterize the spatial variability of some soil 
fertility indicators and to explain the variability of grain yield. 
 
 
METHODS 
 
The experimental field is located at the ABC Foundation Research Center, in Parana State, 
Brazil.  This region is characterized by a very mild summer climate which allows for application 
of no tillage cropping system. Under these environmental conditions, soil fertility may be more 
limiting to grain yield than soil physical properties. This is the very first stage of data analysis on 
this project as the soil physical analyses are not ready. Soil samples were collected on an 
approximately 30 m square grid at 0-5, 0-10 and 0-20 cm depth and the coordinates of each of the 
225 points were recorded with DGPS.  Soil fertility analyses was made on these samples and the 
properties analyzed here were pH, H+Al, CEC, and Base Saturation percentage. The choice of 
the three depths of sampling was based on the fact that no tillage system tends to favor 
accumulation of some nutrients at the surface. For this reason, the ideal depth of sampling to 
characterize the spatial variability is as yet not known. 
Spatial variability was primarily evaluated through semivariogram calculation, graphing, model 
fitting and comparison for each variable (Burgess & Webster, 1980). The intrinsic hypothesis of 
geostatistics requires that the semivariograms must have a sill, otherwise it indicates that the data 
have a trend in some direction (Vieira et al., 1983). Because a strong trend was found in all 
semivariograms, a linear trend was removed from all the data by fitting a linear trend surface, 
subtracting it from the original data and working on the residuals. The choice of linear surface 
and not any other was because it was the simplest surface that would remove the trend. The linear 
trend surface was added back to the residuals after kriging estimation in order to produce soil 
fertility maps. 
 
RESULTS and DISCUSSION 
 
Table 1 shows the general statistics parameters for the variables under study on the 3 depths 
sampled. For pH, H+Al and for CEC, the change in mean values as the thickness of the layer 
sampled increased from 5 to 20 cm, was not too big. However, for Sum of bases (SB) there was 
about 40% decrease in the mean values. The reason for this is probably due to the concentration 
of nutrients near the surface since the field is cultivated using no-till. The coefficients of variation 
are all, in general, medium to low. For the 0-10 cm samples, there was a decrease in the 
coefficients of variation of all variables, except for SB that had a slight increase. Curiously, for 
the 0-20 cm samples the CVs increase again. It is possible that the depth of placing fertilizer 
changes within the field and 0-10 cm samples this zone more efficiently than the 0-5 cm. The 
coefficients of skewness and kurtosis indicate that as the depth of sampling increases, SB and 
CEC tend to depart from the normal distribution while pH and H+Al approach it. 
The parameters for the semivariograms fitted are shown in table 2, for all three depths sampled. 
The column named WSSD is the Weighted Sum of Squared Deviation of the fitted model to the 
experimental semivariance values. The purpose for this parameter is to express some estimation 
of the goodness of fit for the model, where the smaller the value the better the fit. A perfect fit 
would have a WSSD equal to zero. All semivariograms were fitted with spherical model. The 



column that has the continuity ratio CR=C0/(C0+C1)*100, expresses the proportion of the nugget 
effect to the sill, i.e., the amount of spatial dependence at small distance relative to the total 
variability. Obviously, the smaller the value of this relation, the higher the point to point 
continuity. For pH and for H+Al, as the depth of sampling increased, the CR value also 
increased, which, therefore, indicates that pH and H+Al change with depth, since as the depth of 
sampling increases, the small scale variability also increases. This is probably due to the no-till 
that causes increase in acidity near the soil surface. This is even more evident for pH than for 
H+Al, in particular from 0-5 cm to 0-10 cm. For sum of bases (SB) and cation exchange capacity 
(CEC) the reverse happened, i.e., there was a decrease in CR as the depth of sampling increased. 
This indicates that, with respect to these properties, the soil gets more point-to-point continuity 
with depth. The range of correlation, a, did not follow this trend since it decreased sharply from 
0-5 cm to 0-10 cm, and then it increased back at 0-20 cm. 
The distinct spatial behavior for pH and H+Al when compared to SB and CEC can be better seen 
in the graphs of the semivariograms shown in figure 1. The experimental values for the 
semivariograms for pH and for H+Al grouped much closer to the models fitted than the ones for 
sum of bases (SB) and for cation exchange capacity (CEC), as it was already indicated by the 
corresponding Weighted Sum of Squared Deviations (WSSD), shown in table 1. The 
semivariograms for SB and CEC showed a drastic shortening of the correlation range for the 0-10 
cm depth of sampling when compared to the other two depths. 
From the contour maps for the four variables analyzed for the three depths of sampling shown in 
figure 2, the reason for the linear trend found in the data can be seen. All four variables have a 
very defined gradient towards the left-hand side of the field, except for the surface layer in which 
this effect is somewhat diffuse. This left-hand side of the field has the lowest pH values, the 
highest H+Al values, the lowest SB values and the highest CEC values. Therefore, if the grain 
yield maps also show a decrease towards the left-hand side it will be an indication that soil 
fertility is the major factor affecting them. Otherwise, if the yield maps show different variability, 
then the causes of variability are others but not soil fertility. The three depths of sampling seem to 
be for very different populations because the variables analyzed are stratified by depth. 
Therefore, as far as the characterization of the spatial variability of the variables analyzed, neither 
one of the depths of sampling is better than the other for no-till system. 
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TABLE 1. General statistical parameters for original data 
Variables Mean Std.Dev. C.V. Minimum Maximum Skewness Kurtosis 

0-5cm 
pH 5.56 0.55 9.88 5.00 7.00 0.51 2.04 

H+Al 46.88 18.30 39.02 15.00 98.00 0.43 2.44 
SB 101.00 26.25 26.00 47.00 182.00 0.56 3.34 

CEC 147.90 18.83 12.73 112.00 202.00 0.45 2.77 
0-10cm 

pH 5.24 0.41 7.84 4.50 6.40 0.57 2.83 
H+Al 58.78 19.96 33.95 20.00 98.00 0.04 2.06 

SB 77.41 22.02 28.44 30.20 183.40 0.92 5.21 
CEC 136.20 16.64 12.22 94.20 208.40 0.53 4.49 

0-20cm 
pH 5.10 0.24 9.54 4.30 6.70 0.80 3.21 

H+Al 68.41 610.50 36.11 20.00 150.00 0.55 2.95 
SB 62.83 439.60 33.37 24.20 160.90 0.92 4.66 

CEC 131.20 487.20 16.82 85.80 203.70 0.81 3.54 
 
 
TABLE 2. Parameters for semivariogram models fitted 

Variable Model C0 C1 a CR1 WSSD2 Variance 
0-5cm 

pH Spherical 0.02 0.10 210 16.67 2.04 0.1065
H+Al Spherical 40.00 70.00 195 36.36 66.30 102.70

SB Spherical 380.00 170.00 300 69.09 1418.06 545.10
CEC Spherical 250.00 93.00 300 72.89 680.21 343.50

0-10cm 
pH Spherical 0.03 0.10 210 23.08 3.33 0.1199

H+Al Spherical 90.00 120.00 195 42.86 259.06 200.00
SB Spherical 200.00 190.00 140 51.28 929.30 412.50

CEC Spherical 125.00 100.00 100 55.56 278.55 237.40
0-20cm 

pH Spherical 0.03 0.08 240 23.81 1.27 0.0997
H+Al Spherical 125.00 120.00 150 51.02 256.26 236.50

SB Spherical 200.00 190.00 250 51.28 1370.31 406.20
CEC Spherical 200.00 100.00 250 66.67 519.36 301.70

1CR= C0/(C0+C1)*100; WSSD = Weighted Sum of Squared Deviation 
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Figure 1. Semivariograms for pH, H+Al, Sum of bases and CEC in the 3 depths sampled. 
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Figure 2. Contour maps for pH, H+Al, Sum of bases and CEC for the 3 depths sampled. 
 


